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The 39 wave of computers in drug discovery (80s, 2000, today)
— time for realistic assessment has come

Fortune cover 1981
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Recent headlines (2018-2020)

How artificial intelligence is changing
drug discovery

World first breakthrough in Al drug
discovery

By Emma Morriss - Janua
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Old enough to remember 2000 biotech bubble, Human
Genome Project, etc.

T. Reiss, Trends in Biotechnology, 2001

“The number of drug targets will increase by at least one order of magnitude
and target validation will become a high-throughput process.”

“More drug targets... 3,000—10,000 targets compared with 483"

Recent (NRDD 2017) estimates of drug targets put the number currently at
around 667

-> How to go from technology and potential to applications/better decisions?



Funding going into Al in drug discovery 2021
~$4bn VC funding, $16bn total

Cumulative amount of funding, $ M.
VC funding, $ M.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

https://www.biopharmatrend.com/post/397-pharmaceutical-artificial-intelligence-in-2021-key-developments-so-far/



Current discovery pipeline: Al-based start-ups vs big pharma
‘Al-native companies’ Top 20 pharma
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-> Little in vivo safety (Phase 1) data yet; virtually no in vivo efficacy (Phase 2/3) data yet

Jayatunga et al., Al in small-molecule drug discovery: a coming wave? Nature Reviews Drug Discovery 7 Feb 2022



Conclusion about the world as It Is

- No in vivo relevant discovery coming out of ‘Al’ confirmed so far

- Lots of activity in early stage pipeline of Al-first companies, but
often already explored targets, close analogues (Jayatunga et al.)

- Data is often limiting factor — in both chemical and target space
(leads to work on well-explored targets, with more data, less
complex pharmacology)

- Appropriate question to ask: Where is the novelty?

- Is input (e.g. funding) success, or output?
- The first ‘Al-designed drug’ will be celebrated by the media, but...

... tens of billions went into funding Al in drug discovery, so even the
null model would lead to an expected tens of approved drugs
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The quality of in vivo-relevant decisions matters
more than speed and cost!

O Speed - Time of phase reduced by 20%
W Quality - Failure rate reduced by 20%
Cost - Cost reduced by 20%

(in Sm at time of approval)
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Key point: We often cannot label our data
properly in the life sciences

Machine learning/Al knows unsupervised or supervised methods

Predictive methods are (usually) supervised, and need data points
with labels (active/not active; or quantitative labels, etc.)

Those labels need to come from experiments

Experiments (and hence labels) often either fall into the ‘large-scale,
but little in vivo relevance’ or ‘in vivo relevant, but small scale and

conditional’ category
This Is a problem for AI/ML in drug discovery and safety

So should we use and analyze our data? Absolutely!
But we need to work towards in vivo relevance of data, jointly



A simple view on the world: Linking Chemistry, Phenotype,
Targets / Mode of Action (myself, until ca. 2010)
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¢ ° Molecular

Structure

Phenotypic
Response Bioactivity
Data 1 Data

Phenotype ‘pathways’

Protein /
Mode of Action

a.k.a. “The world is flat”
= “We believe our labels”

“Compound A is toxic”,
“Compound B binds target X”,
“Compound C treats disease Y7, ...

Works In cases where data Is large-
scale, and homogenous, and we have
meaningful labels

Does not consider data conditionality,
e.g. dose, PK, translatability from
model system to in vivo setup,
endotype, genotype, etc. etc.



The ‘flat earth’ view can still help! Eg Public target
prediction model, based on ~200 mio data points

- E.g. work of Lewis Mervin, with AstraZeneca

2015, J. Cheminformatics (7) 51

ChEMBL actives (~300k), PubChem inactives (~200m); 1,080 targets
Can be retrained on in-house data -
https://github.com/lhmBO/PIDGIN
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Also data publicly available



BUT...The world is not flat. What now?

tructure

Links between drugs/targets/diseases are guantitative, incompletely
characterized

Subtle differences in eg compound effects (partial vs full agonists, off- :
targets, residence times, biased signalling, etc.) Phenotype Pateye Pl

‘Pathways’ from very heterogenous underlying information; dynamic i
elements not captured etc.

Effects are state-dependent (variation between individuals, age, sex, co-
medication...) — PK is often rather neglected in Al approaches

Endotyping is not sufficient — how do we characterize disease/phenotypes?

We don’t understand biology (‘the system’), we don’t know what we should
label, and measure, hence ...

We label what we can measure: “Technology push’ vs ‘science pull’ (1)

Are our labels — ‘drug treats disease X’, ‘ligand is active against
target Y’, ... - meaningful?

Conditionality: Causality, confidence, quantification, ....?
Computer science is tremendously powerful... but is our data?




Example of labelling problems: adverse reactions

- “Does drug Y cause adverse reaction Z? Yes, or no?”

- Pharmacovigilance Department: Yes, if we have...
- A patient with this genotype (which is generally unknown)
- Who has this disease endotype (which is often insufficiently defined)
- Who takes dose X of drug Y (but sometimes also forgets to take it)
- With known targets 1...n, but also unknown targets (n+1...z)
- Then we see adverse reaction (effect) Z ...
- But only in x% of all cases and
- With different severity and
- Mostly if co-administered with a drug from class C, and then
- More frequently in males and
- Only long-term
- (Etc.)

- S0 —does drug Y cause adverse event Z?



Data/’Al’ in early discovery vs efficacy/safety

Early discovery/proxy space
(usually in vitro)

Often (eg
protein activity), hence...

Models have clear labels
(within limits of model system,
eg ‘ligand is active against
protein at IC50<10uM’, or
solubllities, logP, or the like)
Good for model generation:
Many, clearly categorized data
points

Efficacy/safety (usually in vivo)

(to generate
data), fuzzy labels (classes ‘depend’,
on exposure, multiple eg
histopathological endpoints) —
hence...

Difficult from machine learning angle

- Data: Difficult to generate, eg animal
data tricky, even within single
company (confounding factors
abound)



Problem setting in early discovery vs safety

Early discovery/proxy space Efficacy/safety
— ‘find me
suitable 100s or 1000s out of
a million’ (eg screening)

based on limited data...

‘for now’, predicting absence of
predicting presence of ‘everything’ (eg different modes
something of toxicity)

- Computationally generative - Predictive models (more tricky

models often fine than generative!)
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Representation and model are intrinsically linked (ie,
model uses native object representation by pixels)

Molecular Weight = ...
Molar Refractivity = ...

Artificial Neural
Network/DNN?
Support Vector
Machine? Random
Forest? Bayesian

Classifier?...

Both representation and modelling approach are largely trial and

error (and not intrinsic to the chemical domain)

Transcript-/proteomics? High-

Histopathology? ....
L

Artificial Neural

? Network? Support
content imaging? Epigenetics? ™ Vector Machine?

Random Fore§t?

Both representation and modelling approach are largely trial and
error (in particular the information content of biological readouts

has only been established for particular cases)
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Property A

Conditional labels (eg
dependent on assay
system, genotype, ?
dose, endotype, sex,
age, comedications,
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State/Effect B

Heavily conditional
labels (eg
dependent on
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endotype, sex, age,
comedications,
lifestyle, ...)



Much of the data we have has been generated with proxy
assays. Why is this a problem for Al in drug discovery?

- There is what we are really interested in - say, mitochondrial safety,
Drug-Induced Liver Injury (DILI), ...

- And there is what we measure as an assay endpoint — say,
cytotoxicity in a Glu/Gal (differential cytotoxicity) assay to approximate
mitochondrial safety; Bile Salt Export Pump (BSEP) inhibition to
approximate DILI, ...

- Take-away: ‘Proxy’ assays measure only part of reality, in a particular
assay, with particular conditions

- Not to be confused with property itself (1)

- Problem: Proxy endpoint (a) taken as ‘ground truth’ in Al in drug
discovery, (b) embedding into project context neglected



Key problem in chemical datasets: Biases!
Influences all explainable Al approaches (!)

- Chemical space is 10 - however, our data (large is 10°
compounds) clusters tremendously
- Drugs? Fast followers, analogues
- Published literature? Series (for SAR)
- Etc

- Example (from own work): 649 bitter compounds vs 13k
compounds from MDL Drug Data Repository

- Characteristic features for bitter compounds?

Sugar rings! (due to glycosylation of natural products,
which are often bitter; shown are fingerprint features which
capture parts of those rings)

Rodgers, J. Chem. Inf. Model. 2006, 46, 5609.




The question needs to come first... and then the data, then
the representation, and then the modelling method!

http://www.DrugDiscovery.NET/HowToLlie

A method cannot
Can be save an unsuitable
combined MEthOd representation

(eg end-to- (Captures relevant which cannot
end relationships)

learning) remedy irrelevant

Representation data for anill
(Captures relevant thought-through

information) question

Data

(Relevance for question asked/suitable
labelling, amount, and quality)

Question/Hypothesis
(Identification of key parameters/readouts needed to answer a
question; practically relevant)

Lots of
attention
currently
here...

But we
need to
care more
about this
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What Is a computational model?

We have (from experiments): Molecule -> Endpoint

Measured (condition: experiment)

— IC50=..nM

> Endpoint

" == |C50=..nM



Descriptors

Provide an information-preserving representation of input data (e.qg.
structures) for the model

Either knowledge-based (e.g. reactive groups), or (usually) ‘trial
and error’

Can also be biological readouts (gene expression, cell morphology)

Can be learned from data, but only If there Is enough data, and we
can meaningfully label!

NHmQ  Laver: o 0100101010000...

C.ar(sp®)  C.ar(spd
'- C.ar (sp?)

C (sp?) Fingerprints,
pharmacophores,
surface properties,
substructures/
functional groups,
shapes,
physchem
properties efc.



Types of models (all of which can involve feature
selection)

a) 1-to-1 Comparison b) Clustering/k-NN methods
- Similarity-based
(single gL R _BE
. N BN R
neighbour, 1-NN) H BN B

- Clustering-based
(multiple
neighbour, k-NN) HE E

C) Machine Learning Model

H B B — 0

- Machine learning H Bl B
models




How do we know that something works? What is ‘validation'?

- Core gquestion In science, core guestion for start-ups

- In theory we establish a method, use a benchmark, and know how well the
method works
- In practice this doesn't really work with in vivo data —
- Labels are either mostly only in vitro-relevant, or conditional (‘depend’ on dose, etc)

- Validation is costly (e.g. phase Il studies for efficacy; plus controls), little
prospective data

- Difficult to sample distribution in chemistry/’project’ space well (diversity,
number), so performance depends heavily on test set

- Retrospective validation is all we can do (but no prospective discovery,
predictivity for future projects unknown, all behave differently)



Why ‘validation’ of a model is tricky: You get the numbers you
want (dependlng on the questlon you ask/data set you use!)
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Chemical space is
large; data sets are
small

Model is unable to
generalize to unseen
spaces

Effect of changes is
conditional on
scaffold/context

Sampling of data is
generally insufficient

‘Every model is a local
model”



Model validation vs process validation
(e.g. compound structure-based property predictions)

Compound
with project Follow-up
context Prediction, assays, efc.
(Disease, Confidence

------ » endotype, Decision in sasssasaP
target, target disease
organ, context (in
anticipated Vivo
dose in \ ] relevant!)

man,...) |

Improving model performance

|

Improving drug discovery




Using computational models for decision making often disappoints
since (a) model validation is decoupled from process validation, and
(b) many (most!) models use only proxy data (‘model of models’)

Compound
with project

context

(Disease,

...... ) endotype,
target, target

organ,

anticipated

dose in
man,..

)

Prediction,
Confidence

Improving model performance

r

Improving drug discovery

Follow-up
assays

Decision in ssssssss >
disease
context (in
VIVO
relevant!)

_J



Model validation — two resources

1. http://www.drugdiscovery.net/HowToLlie
2. Nature Reviews Chemistry 2022 article

Evaluation guidelines for machine
learning tools in the chemical sciences

Andreas Bender, Nadine Schneider, Marwin Segler, W. Patrick Walters,
Ola Engkvist and Tiago Rodrigues
ML model reporting guide
\v'| Data set availability v ’Appropriate comparisons
|v'|Code availability |v'| Prospective evaluations
[v'| Comparison to baseline [v|Model interpretation

'v'| Appropriate metrics




Questions to ask your friend, the modeler (1/2)

- Key goal: How good is the prediction for my new compound?

- Data

- What is the number of data points in the model, and is chemical space
coverage relevant for my application?

- Performance is a function of space! Less space... gives a (numerically)
better model! Performance/applicability domain is a trade-off!

- What is the closest neighbour (according to mechanistically
Interpretable space; model space; similarity space), and is it relevant,
given the particular question being asked?

- Descriptors

- How was the descriptor chosen, and is there a mechanistic rationale for
Its choice? (depends on understanding of system; e.g. reactive
substructures, bioactivity-based, generic similarity, ...)



Questions to ask your friend, the modeler (2/2)

- Models

- Was there an external test set used in model validation (and was it
large, diverse, relevant to new compound predictions)?

- Does model performance change, depending on parameter choices
(indicates model instability), and training/test set splits (indicates
overfitting)?

- Is there an applicability domain/confidence that the model assigns —
and does it actually work on the external test set (rather often it
does not!)?

- If all of this is answered satisfactorily, then (a) data in the
model covers my new molecule, with (b) a suitable
descriptor, and provides (c) a confidence with the prediction
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Applications

- Cell Painting — What is it?
- Predicting mitochondrial toxicity

- Merging chemical structural and cell painting
Information

- Predicting mitochondrial toxicity of PROTACSs

- Representing and understanding high-dimensional
feature spaces



Problem

- In many (most?) cases we don’t understand how
something works (i.e., biology)

- If we understand how something works we can do
hypothesis-driven, science-pull driven data generation

- If we don’t understand how something works we need to
revert to hypothesis-free, technology-push driven data
generation and describe variance

- In this case we need independent pieces of information,
and we need to retro-fit to what is relevant



Why —omics, why cell morphology, ... if we have

the structure?

Phenotype Structure Targe! prediction
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D. W. Young et al., Integrating high-content screening

and ligand-target prediction to identify mechanism of
action, Nature Chem. Biol. 2008



Cell Painting cell morphology assays:
SIX stalns/flve channels/eight compartments

Nucleoli Nuclei Mito AGP

DMSO

Neutral Control

2,5-ditertbutylhydroquinone

Oxidative phosphorylation
uncoupler

Azathioprine
GSH depletion;
oxidative stress

Podophyliotoxin

Microtubule
destabilizers

Paclitaxel

Interferes with microtubules;
GSH depletion

- UNIVERSITY OF

> CAMBRIDGE Anika Liu and Srijit Seal et al



Features of the Cell Painting Assay —
Form basis (input variables) of machine learning model

For each identified compartment, measurements include:
* Counts

* Size: area, volume, perimeter, diameter

e Shape

* Texture (smoothness)

* Intensity

e Spatial relationships between features

SINGLE MICROSCOPY- FEATURE MORPHOLOGICAL
' BASED ASSAY CELLULAR IMAGES IMAGE ANALYSIS EXTRACTION OROFILEe
) _
Ho/©/ i N . B @ AGGREGATED
! » , AW . INTO PROFILES —
CHEMICAL e > = > =
PERTURBATION pigr e =

UNIVERSITY OF Bray, M. A.; Gustafsdottir, S. M et al., A Dataset of Images and Morphological Profiles of 30 000 Small-

CAMBRIDGE Molecule Treatments Using the Cell Painting Assay. GigaScience. Oxford University Press December 1,
) 2017, 1-5.



OXIDATIVE PHOSPHORYLATION
INHIBITORS/ UNCOUPLERS

ATP Synthase
SR\

Mitochondrial toxicity
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Toxicants act on multiple pathways to exhibit mitochondrial toxicity, mostly inhibition of mitochondrial
respiratory chain or uncoupling of oxidative phosphorylation,

. UNIVERSITY OF S. Seal et al. Integrating Cell Morphology with Gene Expression and Chemical

CAMBRIDGE Structure to Aid Mitochondrial Toxicity Detection, bioRxiv 2022



Dataset

Training Dataset:

« Tox21 Mitochondrial membrane potential disruption assay hit calls
(summary assay)

« 382 compounds

* 62 Mitotoxic

External Test:

« Additional mitotox assays from CHEMBL, PubChem, Mitotox
Database relevant to mitochondrial potential

« 244 compounds

« 47 Mitotoxic

UNIVERSITY OF Hemmerich, J., Troger, F., Fuzi, B. & F.Ecker, G. Using Machine Learning Methods and

CAMBRIDGE Structural Alerts for Prediction of Mitochondrial Toxicity. Mol. Inform. 39, (2020)



Toxic compounds are more similar in morphology space than
fingerprint space

Morphological space is more able to discriminate between mitochondrial toxicants and non-toxicants than
structural fingerprints.
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Intra- and inter-class pairwise similarity for 486 compounds (85 mitotoxic)

UNIVERSITY OF
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Morphology space clusters compounds with similar mechanisms

Compounds clustered
further away from the
distribution of majority
of compounds having
similar mechanisms of
actions, for example,
microtubule disruptors

Principal Component Analysis of 542
compounds in 110-dimensional Cell
Painting feature space.

. UNIVERSITY OF
CAMBRIDGE

Principal Component 2 (explained variance percentage: 19.2 %)
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10 Fusion models perform better

[ Nested CV

W External Test on external test set
0.8 1
« External test set: F1 Score increases by
06 - 60% (0.25 to 0.42 in absolute terms)
5 o when using fusion models compared to
o \ Morgan fingerprints.
0.4 1

 Our method achieve higher sensitivity
0.2- (0.79 in our study vs 0.37 in Apredica
MitoMass) with comparable balanced
accuracies (0.69 in our study vs 0.65 in
© LS &S Apredica MitoMass).

0.0

Hallinger, D. R., Lindsay, H. B., Friedman, K. P., Suarez, D. A. & Simmons, S. O.
Respirometric screening and characterization of mitochondrial toxicants within the toxcast
phase i and Il chemical libraries. Toxicol. Sci. 176, 175-192 (2020)




Cell Painting features related to mitotoxicity

Biological significance of Cell Painting features with respect to Mitochondrial Toxicity :

MITOCHONDRIAL FEATURES FEATURES FROM OTHER IMAGE CHANNELS

Cells Intensity MaxiIntensityEdge Mito Cells Correlation Costes DNA AGP
(PPV0.83) (PPV 0.52)

Edge of segmented object potentially indicates loss of h

membrane integrity

Potentially indicates DNA fragmentation and
entering apoptosis or cell death

UNIVERSITY OF




Application to mitochondrial toxicity of PROTACs

diemical
LHO®OBG

pubs.acs.org/acschemicalbiology Articles

Cell Morphological Profiling Enables High-Throughput Screening for
PROteolysis TArgeting Chimera (PROTAC) Phenotypic Signature

Maria-Anna Trapotsi, Elizabeth Mouchet, Guy Williams, Tiziana Monteverde, Karolina Juhani,
Riku Turkki, Filip Miljkovic, Anton Martinsson, Lewis Mervin, Kenneth R. Pryde, Erik Miillers,
lan Barrett, Ola Engkvist, Andreas Bender, and Kevin Moreau™

®* Work by Maria-Anna Trapotsi, Kevin Moreau, and others

®* With AstraZeneca



Multi-dimensional scaling shows better separation of

toxicants from non-toxicants at 1 and 10uM than 0.1uM -
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Prospective validation of mitotoxicants successful
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Merged Models can improve applicability domain (here for Tox21
endpoint, separate work)

Morgan Fingerprint Cell Painting Merged Models
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But how to interpret Cell Painting space, which is highly
correlated?

Cell morphological readouts contain information on several bioactivity
endpoints

Features are highly correlated — we can remove some of them, but then we
lose biologically meaningful information

We obtain here feature maps which group correlated features, which have
Importance for a particular endpoint

We can obtain per-endpoint and per-compound importance heatmaps using
Grad-CAM.

UNIVERSITY OF

CAMBRIDGE



Method

1. Prepare Feature Map

Tox21 Assays

0 1 2 3 4

t-SNE of Feature Map

Metadata_profile_id profile_0 profile_1 profile_2 profile_3 profile_4
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Features are related by measurement type

« Majority of features are
related by measurement
function than by objects
they were measured In
(cells, cytoplasm, or nuclei)

Intensity
Correlation
Granularity
Texture
AreaShape
Location
Neighbors
Number

Parent
RadialDistribution

« For example, granularity,
features are  clustered
together from all
compartments which means
Information on granularity
was homogenous e, BT
throughout the channels. T

Texture

' Cells
Cytoplasm
Nuclei
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“The universe of toxic endpoints in cell painting feature space”

For models predicting proliferation decrease endpoint:

inhibits cell proliferation in the

mitochondrial toxicity G(1) phase of the cell cycle antiandrogens
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Microtubule disruptors and ER Stressors affect texture features
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A few thoughts on —omics/cell morphology data
for anticipating compound safety

We mostly live in hypothesis-free, technology-push space — we should
move to hypothesis-driven, science-pull space where we can

‘Sometimes you see something — but sometimes nothing, and
sometimes far too much’. We often don’t know where we are when /
don’t understand applicability domain of readouts

We seem to be very good at detecting ‘the obvious’ (‘tubulin inhibitor’,
‘HDAC inhibitor’, etc.), but often not the finer details

To change this needs real consortia — including experimental
design and prospective data generation, not just ‘sharing what we
generated for entirely different reasons ages ago anyway’ (since
this is often not what helps us now!)



Conclusions

- We should analyze our data, absolutely!
- Life science data is difficult to label, and hence to model

- '‘Big data’ is good, but heterogeneous data makes quantitative
decisions often difficult

To advance, we

- Likely need forward-looking consortia, for generation and
evaluation of relevant data to predict in vivo-relevant endpoints

- Need to take care to understand applicability domain of readouts
better

- Embedding into process, and building the right model for decision
making is key (it's not about ‘numbers’, outcome for the real-world
process Is what matters!)
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‘In Silico modelling for dummies’ session
organized by the British Toxicology Society

- In November 2022
- 2 Hour session — Background, and seminar on ‘how to
build your own models’

- Mall me If you are interested and | will keep you posted:
ab454@cam.ac.uk



Thank you for listening!
Any questions?

Contact: ab454@cam.ac.uk

Personal email: maill@andreasbender.de
Web: http://www.DrugDiscovery.NET
Twitter: @AndreasBenderUK




